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Crystallographic puzzles not covered by the present crystallography, like

integral indexing and crystallographic scaling of axial-symmetric biomacro-

molecules and icosahedral viral capsids and/or integral lattices, can possibly be

explained by extending (n, d)-dimensional superspace crystallography to include

finite subgroups of the higher-dimensional orthogonal group O(n) and not only

those of O(d), as restricted by the physical dimension d.

1. Introduction

There are empirical observations of generic crystallographic

properties of biomacromolecules, of icosahedral viruses, of

quasicrystals and of three-dimensional crystals not covered by

the present crystallography, not even if extended to higher

dimensions according to the superspace approach. Generic

means that these properties are not limited to a few isolated

cases and, therefore, hardly represent marginal or accidental

phenomena.

Examples of these unexplained properties are first of all the

integral lattices which appear as sharp peaks in the frequency

distribution of axial symmetric crystals as a function of the

ratio � ¼ c=a (Janner, 2004a; Gelder & Janner (2005a,b). In

particular, in the case of inorganic hexagonal crystals, the most

important peak occurs for � ¼ 1, which implies that the

lattices of the ideal structures responsible for the peaked

distribution are isometric hexagonal, with lattice parameters

c ¼ a. Normal hexagonal lattices certainly also contribute to

the same peak. In axial-symmetric proteins (Janner, 2005a,b)

and nucleic acids (Janner, 2001a), the striking property is

represented by the possibility of assigning rational indices to

the vertices of their enclosing forms, according to three- or

higher-dimensional lattices. Again, these lattices, denoted

form lattices for making a distinction with the crystal lattices

arising from translational periodicity, are integral (at least in

all cases investigated so far).

From the molecular point of view, the structural relevance

of form lattices is already a puzzle, that of integral lattices an

even greater one, despite the possibility of extending the

crystallographic concepts to molecules, in analogy to what has

been done for the aperiodic crystals (Janner, 2001b).

The first indication that something fundamental and unex-

plained is involved came from proteins, to begin with the

decameric conformation of the cyclophilin–cyclosporin

complex more than ten years ago, and observed since then in

many other axial-symmetric proteins and nucleic acids. In

axial projection, the external polygonal enclosing form

appears to be related to that of the central hole by a poly-

grammal scaling as occurring in star polygons. Starting from a

regular polygon with p vertices, one obtains a star polygon

with Schäfli symbol fp=qg by straight lines joining the

q-successive vertices, whose intersections define a central

polygon scaled from the external one by a factor �fp=qg. The

corresponding scaling transformation S�fp=qg is expressible as

an n-dimensional integral invertible matrix, where n ¼ ’ðpÞ is

the Euler ’ function. Therefore, a polygrammal scaling

generates a crystallographic point group of infinite order and

the vertices of the polygrammal form can be indexed by a set

of n integers. Similar crystallographic scalings occur in quasi-

crystals as well (Janner, 1992).

The capsid of an icosahedral virus is built up from an

assemblage of coat proteins, which protect the viral genome

inside a central hole. Considering axial-symmetric clusters of

the coat proteins, one is back in the situation sketched above.

In the particular case of various serotypes of the rhinovirus,

the crystallographic properties mentioned above are

observed, again and again: integral form lattices and crystal-

lographic scalings (Janner, 2006a). Moreover, the vertices of

the whole capsid could be indexed according to a single

icosahedral lattice, invariant with respect to the scaling

relating the polyhedral form of the external surface with that

of the internal one, and expressible by a unimodular six-

dimensional integral scaling matrix.

Last but not least, in the case of biomacromlecules the

principle of a strong correlation could be observed (Janner,

2005c). This implies that the value of one single parameter

suffices for fixing the metrical relation between structure and

geometry. This is a property very natural for highly symmetric

objects, but difficult to explain in theoretical terms.

2. Polygrammal superspace symmetry

For fixing the ideas, consider the pentagram f5=2g. Its Eucli-

dean symmetry, the same as for a regular pentagon, does not

take into account the specific scaling relations among the ten

vertices (the golden mean, in particular). As one knows from

the Penrose tiling and from the decagonal quasicrystals, these



scalings are crystallographic leaving invariant a four-dimen-

sional lattice and the corresponding decagonal Z-module M10

of rank n ¼ 4 and dimension d ¼ 2 obtained by projection.

The scaling transformations are not symmetry of the penta-

gram because of infinite order, even if they allow an integral

indexing of the vertices. They are possible symmetries of a

decagonal (infinite) quasicrystal but are not elements of the

superspace group because in the ðn; dÞ-dimensional super-

space approach the point groups are restricted by the physical

dimension d to be finite subgroups of the orthogonal group

OðdÞ (Janssen et al., 1999).

Looking for finite point-group symmetry of the pentagram

which takes into account its scaling properties, the idea came

to extend the superspace approach to finite subgroups of OðnÞ

leaving, in projection, the Z-module M invariant. One possible

solution is shown in Fig. 1(a). All vertices of the pentagram are

points of the decagonal Z-module M10 and are obtained as

[1100] orbit of the crystallographic point group K ¼ 54 of

order 20, generated by the two four-dimensional matrices of

order 5 and 4, respectively,

R5 ¼

0 0 1 �11
0 0 0 �11
0 1 0 �11
1 0 0 �11

0
BB@

1
CCA; R4 ¼

1 0 �11 0

1 �11 0 0

1 0 0 �11
1 0 0 0

0
BB@

1
CCA; ð1Þ

indicated by the isomorphism type 20.5 on p. 242 of the book

by Brown, Bülow, Neubüser, Wondratschek & Zassenhaus

(BBNWZ) (Brown et al., 1978). In a similar way, the hexagram

of Fig. 1(b) is generated from ½1�110� by the cubic point group

m�33m. The corresponding Z-module M6 is the hexagonal

lattice, projection along the [111] direction of the cubic lattice.

The star octagon f8=3g of Fig. 1(c) is obtained as [1100] orbit

of the four-dimensional octagonal point group K ¼ 82 of

order 16 (indicated in BBNWZ as 16.13 on p. 245) generated

by the two matrices of order 8 and 2, respectively:
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Figure 1
Orbit points of an n-dimensional point group K of order jKj generated
from an element P of a Z-module of dimension 2 and rank n, with basis
vectors pointing to the vertices of the (blue) polygon indicated. (a)
Pentagram f5=2g (n ¼ 4;K ¼ 54; jKj ¼ 20;P ¼ ½1100�). (b) Hexagram
f6=2g (n ¼ 3;K ¼ m�33m; jKj ¼ 48;P ¼ ½1�110�). (c) Octagram f8=3g
(n ¼ 4;K ¼ 82; jKj ¼ 16;P ¼ ½1100�). (d) Heptagrams f7=2g, f7=3g
(n ¼ 6;K ¼ 73; jKj ¼ 21;P ¼ ½111000�). (e) Cluster of K-equivalent
points of a 21=2-rectangular lattice (n ¼ 3;K ¼ m�33m;P ¼ ½120�).
( f ) Cluster of K-equivalent points of a square lattice
(n ¼ 4;K ¼ 86; jKj ¼ 384;P ¼ ½1110�).

Figure 2
The six-dimensional point group K ¼ 2354 of order 240 applied to the
indexed elements indicated of the three-dimensional icosahedral
Z-module generates cluster models of a viral capsid enclosed between
two scaled icosahedral forms. (a) �2-scaled icosahedra. (b) �3-scaled
dodecahedra. (c) �-scaled dodecahedra. (d) �-scaled icosidodecahedra.



R8 ¼

0 0 0 �11
1 0 0 0

0 1 0 0

0 0 1 0

0
BB@

1
CCA; R2 ¼

1 0 0 0

0 0 0 1

0 0 �11 0

0 1 0 0

0
BB@

1
CCA: ð2Þ

In Fig. 1(d), one finds a more complex heptagonal arrange-

ment involving both heptagrams f7=3g and f7=2g as a single

[111000] orbit of the six-dimensional point group K ¼ 73 of

order 21 generated by the two matrices of order 3 and 7,

respectively:

R3 ¼

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
; R7 ¼

0 0 0 0 0 �11
1 0 0 0 0 �11
0 1 0 0 0 �11
0 0 1 0 0 �11
0 0 0 1 0 �11
0 0 0 0 1 �11

0
BBBBBB@

1
CCCCCCA
:

ð3Þ

3. Superspace holohedry of integral lattices

The peculiar rational value of the axial ratio squared,

�2 ¼ ðc=aÞ2, of integral lattices can possibly be implied by a

higher-dimensional holohedry. In the present sketchy exem-

plification, the � ¼ 21=2 rectangular lattice appears as a

Z-module defined by the cubic lattice projected along the

twofold axis [110], as shown in Fig. 1(e) in terms of the [120]

orbit points of the cubic m�33m point group. In a superspace

characterization, the (3, 2)-dimensional holohedry of this

integral lattice is m�33m. A less trivial example is given in

Fig. 1( f), with points of a square lattice (which is of course

integral) obtained as [211] projection of Frank’s cubic

hexagonal lattice with axial ratio ð3=2Þ1=2 (Frank, 1965; Janner,

2004b). In this case, the higher-dimensional holohedry is the

four-dimensional hypercubic point group K ¼ 86 of order 384

(indicated on p. 255 of BBNWZ as 384.1) generated by a

matrix of order 8 and one of order 6:

R8 ¼

0 0 0 �11
0 0 1 0

1 0 0 0

0 1 0 0

0
BB@

1
CCA; R6 ¼

�11 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0
BB@

1
CCA; ð4Þ

acting on [1110]. These orbit points recall the (projected)

vertices of the cubic form enclosing the RNA guanosine-

50-phosphate quadruplex (Janner, 2004a, 2007).

4. Viral capsid

According to a (6, 3)-dimensional superspace approach, the

capsid of icosahedral viruses, whose surface is delimited by an

external and an internal form, respectively, can be character-

ized in terms of two polyhedra generated as an icosahedral

cluster from one single point of the icosahedral lattice by the

action of a six-dimensional point group, in a crystallographic

scaling relation similar to that observed in the rhinovirus and

in a few other viruses analysed so far (Janner, 2006a,b).

Indeed, the models of viral capsid shown in Figs. 2(a), (b), (c),

(d) represent the orbits of the icosahedral lattice points indi-

cated, by the action of the group K ¼ 2354 of order 240,

semidirect product of the icosahedral group 235 by a cyclic

group of order 4, generated by the six-dimensional integral

matrices

R3 ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 �11 0

0 0 0 0 0 �11

0 0 0 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; R5 ¼

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
;

R4 ¼

1 0 0 0 0 0

0 0 0 0 0 �11

0 0 0 �11 0 0

0 �11 0 0 0 0

0 0 0 0 �11 0

0 0 �11 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð5Þ

5. Concluding remarks

In the superspace crystallography extended to higher-dimen-

sional point groups, the rational indices of enclosing forms of

biomacromolecules and of icosahedral viruses and their crys-

tallographic scaling properties appear to be the simple

consequence of a higher-dimensional point-group symmetry.

No form lattice is then required. Indeed, a crystallographic

point group being faithfully represented by integral matrices

transforms a given position with integral indices (which are the

coordinates of the point in the corresponding lattice or

Z-module) into other atomic positions with integral indices. In

a similar way, the rational indices of a regular hexagon are

obtained by applying the two-dimensional matrix group 6 to

the point [1, 0] without the explicit need of a hexagonal lattice.

Moreover, the axial ratios of integral d-dimensional lattices,

leading to a reduced number of lattice parameters, could

follow from their ðn; dÞ-holohedry, which is not a d-dimen-

sional one. In the crystal case, the problem is not the finite

width of the peak assigned to a given integral lattice. As

remarked by one of the referees, the concept of the

Bärnighausen family tree of crystallographic group–subgroup

relations, the ‘Stammbaum’, is based on the fact that most real

structures slightly deviate from ideal ones (Bärnighausen,

1980). Moreover, the Pearson symbol forms clouds in the

parameter space, structures of the same structure type having

a given number of atoms in the unit cell of a Bravais lattice.

Interestingly enough, in the implementation of structure types

adopted in the Inorganic Crystal Structure Database ICSD,

the range of axial ratios � ¼ c=a is one of the criteria adopted

(Allmann & Hinek, 2007). The problem is that the two ideal

cases, that of integral lattice and that of normal lattice, occur

together in the same peak and cannot be distinguished by
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means of the known crystallographic laws. If, however, the

holohedry of an integral lattice is different from that of the

corresponding normal lattice, then the Wyckoff positions are

also different and, in principle at least, one should be able to

identify a different behavior of structures involved in the given

peaked distribution. Typical for the set of equivalent positions

of higher-dimensional point groups is its composite character

with respect to the Euclidean symmetry in the lower-dimen-

sional space, as one can see in all the examples shown in Figs. 1

and 2. This is a hint to look at the content of a unit cell (as in

Pearson’s symbol). Analogous considerations arise from the

molecular cases, where a distinction between enclosing form

(geometric, symmetric and ideal) and content (where the real

atoms are) is essential, as well as the composite character of

the form which has external and internal boundaries in a

mutual relation. So, for example, a hexagrammal form implies

a regular hexagon inside an external one in a well defined

scaling relation. As in the case of aperiodic crystals, higher-

dimensional crystallography is not enough to be relevant to

real structures. One has to find out the possible actions of an

n-dimensional group in the d-dimensional physical space,

which in fact are expressible in terms of group representations.

These considerations need not all be true and are, so to say,

working hypotheses. In the same perspective, the examples

given do not prove that all the crystallographic puzzles

mentioned in the Introduction are covered by this superspace

approach. Many implications, like those obtained by inter-

section, an operation dual to projection, have not even been

mentioned and the conceptual foundation of the whole is not

yet worked out. Potentially, however, these ideas open the

possibility of applying to natural structures like crystals,

quasicrystals and molecules the overwhelming wealth of the

higher-dimensional crystallographic groups. These groups

have already been classified by mathematicians up to dimen-

sion 6, and there are computer algebra programs allowing the

consideration of higher dimensions as well (Brown et al., 1978;

Eick et al., 1997; Opgenorth et al., 1998; Thiers et al., 1993;

GAP, 2006). In addition to the conceptual basis of an extended

ðn; dÞ-dimensional crystallography, the implications of the

approach (like extinction rules in diffraction, normal modes of

vibration and so on) have to be worked out and verified to be

applicable.
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